- **2.** step function
- **3.** maximum
- **4.** transformation
- **5.** zero of the function
- 7. domain: $(-5, \infty)$; range: [-4, 1]; zeros: x = 1 and x = 3; positive: (1, 3); negative: (-5, 1) and $(3, \infty)$
- 8. domain: (-5, ∞); range: [-4, 1]; zero: x = 2; positive: (2, ∞]; negative: (-5, 2)

10. domain: [0, 100]; range: [0, 50]; increasing: none; decreasing: [0, 100]; *x*-intercept: 100; *y*-intercept: 50; positive: [0, 100]; negative: none

13.

14.

15. Let f(x) = |x|. When k > 0, g(x) = kf(x) represents a vertical stretch of the absolute value function. For every x-value, each y-value of g is k times farther from the x-axis than the corresponding y-value for f. The function $h(x) = \left| \frac{1}{k} x \right|$ produces a horizontal stretch by a factor of k. For every y-value, each x-value of h is k times farther from the y-axis than the corresponding x-value for f.

16.

17.

18.

19.

20.

$$f(x) = \begin{cases} -\frac{3}{2}x - \frac{15}{2}, & \text{if } x < -3\\ \frac{1}{5}x + \frac{8}{5}, & \text{if } -3 \le x \le 2\\ 3, & \text{if } 2 < x \le 5 \end{cases}$$

21.

Yes; The graph of every absolute value function is composed of two branches, one of which is increasing and the other decreasing.

22.

$$C(n) = \begin{cases} 120n, \text{ when } 0 < n \le 10\\ 90n + 1, 200, \text{ when } n > 10 \end{cases}; \$1,920$$

32.

$$x = -2$$
 and $x = 1$

33.
$$x = -11$$
 and $x = 5$

- **34.** $(-\infty, -3)$ and $(1, \infty)$
- **35.** (–1, 8)
- **36.** No; Noninteger answers are not easily obtained from a graph. Sometimes you can only approximate the answer.
- 37. The car is ahead of the truck when 63x > 55x + 30, or after 3.75 h.

